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SIGN-DEFINITENESS CONDITIONS FOR COMPLEX FUNCTIONS 

AND THE STABILITY OF THE MOTION OF NON-LINEAR SYSTEMS* 

A.B. AMINOV and T.K. SIRAZETDINOV 

Methods are developed for constructing sign-constant and sign-definite 
functions. Theorems are proved on the stability and instability of 
motion with a composite Lyapunov function, enabling the attraction 
domains to be estimated and determined. Examples are considered. 

The development of the Lyapunov vector function method /l/, the formulation and solution 
of various problems of the stability of motion for variable subsets /2/, multistability /3/, 
together with experience in the design of automated systems employing these methods, have 
shown the need for further developments in methods and algorithms for constructing Lyapunov 
functions and for obtaining fairly simple and constructive conditions for their sign-definite- 

ness. At present, the necessary and sufficient conditions for sign-definiteness have only 

been obtained for quadratic forms. These are the well-known Sylvester criterion and the 

recursive criterion 141. For higher-order forms and their sums, basically only sufficiently 

conditions for sign-definiteness have been obtained /4, 51. Furthermore, many papers on the 
solution of various problems of the stability of motion determine the sign-definiteness of 
the functions being used from estimates of their values. 

This paper generalizes these approaches to obtain sign-definiteness conditions for 

composite functions and gives a method for constructing Lyapunov functions in the form of a 
composition of known sign-definite functions possessing special mapping properties. 

1. Construction of sign-constant and sign-definite composite functions. Suppose that 
in the domain (open set) G,C_ R"'(OE G,) we are given a continuous real Lyapunov function 
v: Gy-+H,CR1 of the real variable Y = (yl,...,y,)= E R", which can in general be sign- 

constant or sign-definite in some domain &,"CG~(O EG,'). Here H,, is the image domain of 
the function Y-f F(Y) and R"' is an m-dimensional Euclidean space. 

It is known /l/ that the function_ y-f V(y) is sign-constant in the domain G,' if V(y)> 
0,Vy E Gyo\ 8 or V(y)< 0, Vy E G,"\ 0 and V(O) = 0. If V(0) = 0 and V (y) > 0, Vy E G,' 
or V(Y) < 0, VY E GyO \ 0, then the function y+ V(y) is called sign-definite in the 
domain G,". 

Suppose furtherthat with the help of the continuous mapping f: G,* -+G,* (0 E G,* C R", 
0~ G,* C R") of the form 

y = f(x), f (0) = 0; x = (x1, . . ., z,)T E R", f = (fl, . . ., f,,)T (1-l) 

the function Y-+ v (Y) transforms into the function W:G,+ H, C R' where G,* is the image 
domain and G,* the domain of definition of the map y=f(x) (l.l), G, is the domain of 
definition (G,sG,*) and H, is the image domain (H,GH,) of the function x+ W(x), and 
R" is n-dimensional Euclidean space. 

We wish to find the properties of the map y = f(x) (1.1) for which the function x* 

w (4 possesses the properties of the function y --f V(y), i.e. that it is either sign-con- 
stant or sign-definite in some non-empty domain G,"C R"(OE G,"), depending on which proper- 
ties are possessed by the function Y-+ V(Y) in the domain G,,". We denote by G,,*' the domain 
of images of all x EGXo under the map Y = f(x) (l.l), i.e. the image of G,". 

Definition 1. The continuous map y = f(x) (1.1) is constantly non-trivial if f(0) = 0 
and there are values x~ G,* \ 0 such that Y = f (x)#O. 

Definition 2. The continous map y=f(x) (1.1) is definitely non-trivial in the domain 

G,” (0 E G., C G,*) if f(0) = 0 and for all XE G,"\O the correspondingy = f(x)#O. 

We note that the set of constantly non-trivial maps includes the definitely non-trivial 
maps. This is similar to the inclusion of the sign-definite Lyapunov functions in the set of 
sign-constant functions. 

Theorem 1. If the continuous function Y -+ V(Y) is sign-constant in the domain G,"c R" 
and the map y = f(z) (1.1) is constantly non-trivial and G,*"cG,* n G,", then their 
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composition W(x) = V (f (x)) is a continuous sign-constant function in the domain G," c_ G,* 
with the same sign as the original function Y-f V(Y). 

Proof. Suppose that the conditions of the theorem are satisfied, and that, to be 
specific, we have V(Y) > 0, VY E G& \ 0 and V(0) = 0. For x = 0 we have y =0 and 
so W(0) = V(0) = 0. We then choose an aribitrary point XE G," \ 0 in the domain G,"c,G,*. 
Under the map y = f(x) (1.1) this point transforms into a point y E G,*"G G,* n G," where 
v (Y) > 0. We therefore have the inequality W(x)>O, Vx EG,"\O and W(0) = 0 for the 
composition W (x) = V(f (x)) at any point x EG,". Similarly, for V(y)< 0 we obtain 
M/ (x) < 0,Vx E G," \ 0, W(0) = 0. Thus, the function x--f W(x) is sign-constant in the domain 

G," with the same sign as the function Y * V(Y) in the domain G,". The continuity of the 
function x+ W(x) follows from the continuity of the function Y +w (Y) and the conti- 
nliity of the map Y = f(x) (1.1). 

We note that if the function Y + v (Y) and the map y = f(x) are differentiable, then 
the composition is also differentiable. We shall frequently use these properties of com- 
posite functions in stability investigations. 

ExwnpZe 1. The function v(y) = yLe + (yz - y# is differentiable and sign-constant through- 
out the space R3, and the map Y, = z1 + tg zl, y, = sin z,, y, = 51 cos 58 is differentiable and con- 
stantly non-trivial in the domain %* = (Xl. 22): 1 q 1 < n/Z, zp E R’). All the conditions of Theorem 
1 are satisfied. Hence the function W(x) = V (y (x))= (zl + tg s#+ (sin zp - z1 cos ze)a is differen- 
tiable and sign-constant in thedomainC,"= G,*with the same sign as the given functiony- V(Y). 

Corollary 1. The linear map y = Ax, where A is a real m X n matrix, preserves 
constant positivity of functions in R”. 

Theorem 2. If the continuous function Y + V(Y) is sign-definite in the domain G,,'c 
R”, and the map y = f(x) (1.1) is definitely non-trivial in the domain G,"c G,* with 
G,*"C_G,* n G,", then their composition W(x) = V (f(x)) is a continuous sign-definite 
function in the domain G," with the same sign as the original function y-V(y). 

Proof. Suppose the conditions of the theorem are satisfied. To fix our ideas we take 

V (y) > 0, Vy E G,” \ 0, V (0) = 0. It follows from the conditions of the theorem that w (0) = 
v (0) = 0. We now choose an arbitrary point x EG,'\O(G,"C G,*). The map y = f(x) (1.1) 
takes this point x into the point YE G,*"c_ G," fl G,*. From the definite non-triviality of 
the map Y = f(x) we obtain Y#O and consequently V(Y) > 0. 

Thus the composition W(x) = V (f(x)) at an arbitrary point XE G,” satisfies the 
condition W(x)> 0, Vx E Gx"\ 0, W(0) = 0. Similarly, 
W(x) < 0, Vx E G," \ 0, W(0) = 0. 

for V(y)<O, VIE G,"\O we obtain 
The function x+ W(x) is therefore sign-definite in 

the domain G," with the same sign as the function y-f V(y) in the domain G,". The con- 
tinuity of the function x+ W(x) follows from the continuity of the function Y + V(Y) 
and the continuity of the map y = f (x) (1.1). 

Example 2. The function V(Y) = y12 - Y,YZ + ~2 is continuous and positive definitethrough- 
out the space I?', and the map f: P- R2 of the form y, = 11, y* = 22 cos 2.1 is definitely non- 
trivial in the space RZ. All the conditions of Theorem 2 are satisfied. Hence the function 
W(x) = 112 - I15.J cos I, + .r*? co?? 11 is continuous and positive definite in P. 

The map f:R3-R2 of the form y, = 1'z12+ x3*, y, = 5% cos x1 is continuous and definitely non- 
trivial in R3. Hence the function W(x) = .z,* + rz2 - z,~~z,~+z,~x cos zI + zzz COSMIC is continuous 
and positive definite in R3. 

The map f: RZ - R’ of the form y1 -= z, y, = az, a # 0 is also continuous and definitely 
non-trivial in RI. Consequently,the function W(z)= (I- a+ a2)z2 is continuous and positive 
definite in RI. 

Corollary 2. The non-degenerate linear transformation y = Ax where A is an flXTl 
real matrix and det A #O, preserves the positive definiteness of functions defined in R”. 

Remark. No restrictions are imposed on the dimensionalities m and n of the mapped 
spaces. Hence in certain special cases a sign-constant function can become sign-definite, 
and, conversely, a sign-definite function can become sign-constant. For example, if we apply 
the definitely non-trivial map y,= zl,y,= z,+ z,, y,= z1 to the sign-constant function v (Y) = 

Y,’ + (y2 - ~3)’ , we obtain the sign-definite function v (x) = z12 + z,a in the space Ra. Going 
the other way, we obtain a sign-constant function from a sign-definite function in R3. Here 
the inverse map .z,=y,,z%= y, - y, is already constantly non-trivial, because for yl= 0, y,= y3# 
0 we obtain zI=zl= 0. 

2. Conditions for sign-definiteness, using quadratic forms. We consider the quadratic 
form 

n--m 
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in which n--m coordinates yi, (il = 1,2,. . ., n - m) are selected and tagged with asterisks. 
The real numbers At,c,(ir, i, =I,. . ., n) form a positive-definite n X n matrix, i.e. the form 

(2.1) is positive definite. 
We introduce a continuous map f: Gwf + G,* (where 0 C? Gvf C Rn and 0~ G,. c R”-m) 

of the form 
YiS* = f (Y,, . . ., _h), f (0) = 0, i, = 1, 2, . . ., n - m (2.2) 

where Guf is the image domain and G,. the domain of definition of the map Y* = f (Y) (2.21, 
Y* = (Y,,Y,,. . ., !/Ml) E R"_", f = (fi, * . 1. $LJ is a vector-function, y=(Yl, . . ., y,fE Rn and 
Rn+ is an (n-n&)-dimensional Euclidean space. 

Using this map as a substitution, we transform the quadratric form V(y) (2.1) into the 
function W: G,+H,c I$*, i.e. 

where G, is the domain of definition and HWthe image domain of the function y--t W(y) (2.3). 
We wish to specify the properties of the map y* = f(y) (2.2) for which the function 

Y - W(Y) (2.3) is positive definite in some non-empty domain G," C R” (0 E G,” C G,). 

Theorem 3. If the quadratric form V(y) (2.1) is positive definite, and the map y* = 

f (Y) (2.2) is definitely non-trivial in the domain G,“EG,’ and satisfies the inequalities 

fi,(y)/yi,>i, t;i,=1,2,...,n-mm; Vyf=G," (2.4) 

then the function y+ W(y) is positive definite in the domain G,,“n R”. 

Proof. Suppose the conditions of the theorem are satisfied. Then inequalities (2.4) 
imply that 

A,,u,f, (Y) - .&,u,~ 2 0 (A,, > 01, . . -7 A-,, n-nl yn-&n-m (y) - (2.5) 

A,-,, n--m YL a 0 (A,-,, n-m > 0) 

Summing the n-m non-negative functions (2.5) and the positive definite quadratric form 
v (Y) (2.11, we obtain the function Y- W(Y) (2.3), which will be positive definite in 
the domain Gy” fi R”. Indeed, at the point y = 0 we have W (0) = D (2.31, while for any 
point YE G,O\O we have W(y)>O, because at that point y we are adding together V(y)> 
0 and the sum of non-negative quantities (2.5). The theorem is proved. 

Example 3. The function F(X) = azl sin z1 f zlzl + 2%‘ will be positive definite in the domain 
G," = ((% +I): 1 II I< d2, x* E RI} for a>x/Z. This follows from condition 12.4) of Theorem 3, i.e. 
the inequality a sin .zl/xz > i for lq[<nlZ is satisfied if a>n12. 

Theorem 4. If Ai,i, (ir, i, = 1, . . ,, m) are real numbers forming a symmetric m X 7n-matrix, 
then for the function 

to be positive definite in the domain G,“C Rn it is sufficient for there to exist real 
numbers 

i = 1,2 t . . -1 m;j = i,i + 1, . . . . m; i> k> 1,~~ s 0, Vk> i 

satisfying the condition 

Uii = 0, Vi z 1, . . ., mr 

a map F: G,,++ G,,*SR”-P for the selected coordinates yi* E R*-p: 

I/i,* = Ft, (y19 . . ., y,), iI = 1, 2, . . ., m - p 
definitely non-trivial in the domain G,"zG,' and satisfying the inequalities 

F+, (y)i+t/i, > 1, Vi, z 1, 2, . * ,, IV, - JS~ 

(2.7) 

P.f4 

(2.9) 

(2.10) 
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and a map f: G,' --f G,' C R” , definitely non-trivial in the domain G,"C G,'C_ R1”, of the form 

yi*= f,‘(X), i, = 1, . . ., m . (2.1i) 

PPOOf. Suppose real numbers aij (2.7) exist obeying condition (2.81,i.e. the recursive 
criterion for the sign-definiteness of quadratic forms is obeyed /3f: 

The recursive formulae (2.7) and condition (2.8) are in fact obtained from the following 
equality: 

(2.13) 

where for condition (2.8) 
the left is the quadratic 
definite. 

Suepose there exists __ 

the right-hand side is a positive-definite quadratic form, while 
form V(y) (2.12). Hence the form V(y) (2.12) is also positive 

a map F: GUF +G,* (2.91, definitely non-trivial in the domain . _. 
G&GG,’ GGys, acting only on the selected coordinates Y,,- (i,= 1, . . ..m - p) and satlsfylng 
condition (2.10). Then according to Theorem 3 the function 

@I/,) 

will be positive definite in the domain G," 1-l R". 
If a map yi, == ji,(x) (2.11) exists, definitely non-trivial in the domain G,"&JG,', then 

substituting the values of Yi, =7 f,, (x), i,: 1, . . ., m (2.11) into the function V* (y) (2.141, we 
find from Theorem 2 that the function W(X) = W* (I(X)) is positive definite in the domain 
Gg0. The theorem is proved. 

EcwnzgiZe 4. The function W(Z)== 5 sin*=+ 11 C0sZ3 + 7r silt 5 - 2.z COS* -5 sin Zz+ 2~ -t- 10 sin z - 22 Cos 
P+- 1i is positive definite for (.~!<nlZ, because all the conditions of Theorem 6 are satisfied. 
Indeed, this function is obtained from the positive definite quadratic form V(I) = PI'_; %IYZ i- 
YIY, i- 5Yz’ + 2Y,Y, + 5Y,Y, + flY,= + Y,Yl -I- 5Y,Y* using a mapping a one selected coordinate y, in the 
first tern, i.e. yl*= 3siny,, definitely non-trivial and satisfying condition (2.10) for IsI< 
n/2, and the map y, = z, yz -= sinr. y, = I- COSZ, definitely non-trivial for 1 sl<n. 

3. Stability and instabiZity theorems with a composite Lyapunov function. Suppose we are 
given a system of differential equations for perturbed motion 

dx/& :=X(X), X(O)= 0, x = (+...,&C" I?” @I} 

where X = (XI, . . . . X,) is a vector function such that existence and uniqueness conditions 
are satisfied for solutions to Eq.(3.1) in the domain G = {x: 11 51) <H = const, 11 I 11% = t12 _t 

. 3 z,"}. We shall investigate the stability of the unperturbed motion 
('3'.1) . 

x = 0 of system 

Theorem 5. Suppose that for system (3.1) there exist: 
a function y-f V(y), differentiable and positive definite in the domain G& 2 G,' ; 
a map f: Gxf +G,'(O E G,'C_ Rn, 0 E G,'c_ P), y = f(x), where y=h . ..f y,)E R"' and 

f = (fl, . ., fm) is a vector function, differentiable and definitely non-trivial in the domain 
G,"GG,'LG; and 

a differentiable and constantly non-trival map g: GEg+GZg,(OEGx"S R", OEG:#C_ R"), a = 
g (XI where z =@I, ,.., z,)ER” and g .== (gl, . . ., gp) is a vector function, such that the 
total derivative of the composition V (f(x)) with respect to t, which from system (3.1) is 

(3.2) 

and using the map z = g(x) is transformed into a constantly negative or identically zero 
function z--f W(z), i.e. dVidt = W(z). 

Then the unperturbed motion x=0 of system (3.11 is stable (uniformly with respect 
to to), and all trajectories emerging from the domain Gzo remain in a bounded domain. 

PPOOf. Suppose the conditions of the theorem are satisfied. Then according to Theorem 2 
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the composition of the function Y-f V(Y) which is positive definite in the domain G,” and 
the map y = f(x) which is definitely non-trivial in the domain GB, i.e. the function 

x -+ V (f (x)) I is positive definite in the domain G,"L R”. According to Theorem 1, the com- 

position of a sign-constant (constantly negative) or identically zero function z-+w(z) and 

a constantly non-trivial map z =g(x), i.e., the function x * w (g (x)), will be respect- 
ively a constantly negative or identically zero function in a neighbourhood of the unperturbed 
motion 5 = 0. Then all the conditions of Lyapunov's stability theorem /6/ with Persidskii's 
addition /7/ are satisfied. Because V (f (x)) 1~ < V (f (4) ll=o, and because the composite func- 

tion x--f V (f(x)) is positive definite, the trajectories of motion remain in a bounded domain 

if they emerge from the domain G,“. The theorem is proved. 

Remark. Theorem 5 remains valid if we take as a Lyapunov function the sum v (f (4) + P (x)3 
where x-p(x) is non-negative sign-constant function with p (0) = 0. 

Theorem 6. Suppose that for system (3.1) there exist: 
a function y+ V(y), differentiable and positive definite in a domain 
a map f: G,‘-+G,’ 

G,” 2 G,‘; 
(0 E G,’ C_ R”), 0 E GYf E R”), y = f (x), where y = (~1, . .> ymd E R”’ 

and f=(fl, . . ..fd is a vector function, such that f is differentiable and definitely non- 

trivial in the domain G," C_ G,'E G; and 
a map: g:G,~+Gz8(O~GxPC_R”, OEG~~ER~),Z=~(X), where z = (zl, . . ., zp) E RP and 

B = (&7 . . .> &J is a vector function, definitely non-trivial in a domain G," Z G," c_ G, 
such that the total derivative dV/dt (3.2) of the composition V (f(s)) with respect to t 
from the system (3.1) can, using the map 2 = g (4, i.e. dV/dt = W (z), be transformed into a 
negatively definite function z * W (z) in the domain G," 2 G,". 

Then the unperturbed motion .z = 0 of system (3.1) is asymptotically stable (uniformly 
with respect to q,, to) and the bounded domain 

G v<e = (x: V (f(x)),< c = const> O)c_Gyo n GzW (5.3) 

lies in the attraction domain of the unperturbed motion x = 0 of system (3.1). 

Proof. Suppose the conditions of the theorem are satisifed. Then according to Theorem 2, 
the composition of the function y-+ V(y) which is positive definite in the domain G," and 
the map y = f(z) which is definitely non-trivial in the domain G,", i.e., the function 

2 + v (f (X))' is positive definite in the domain GT4 According to this theorem, the com- 
position of a function z--f W(z) that is negative definite in the domain GZ" and a map 

z = g (x) that is definitely non-trivial in the domain GZW , i.e. the function x+ W(g(x)), 
will be negative definite in the domain GzW (0 E G," n G," # a). Then all the asymptotic 
stability conditions of Lyapunov's theorem /6/ with Malkin's addition /7/ are satisfied and 
the unperturbed motion x=0 of system (3.1) is asymptotically stable, uniformly with respect 
to 50 and t,. 

Here the bounded domain G,<, (3.3) is contained in the intersection of the domains 
G," and G,W, and so the level surfaces of the positive definite function x+ V(f(x)) are 
closed surfaces nested inside one another. Hence any trajectory x(t; x0, to) with initial 
value x0 = x (t&E G,<, will cross the surfaces from the outside to the inside and tend to the 
solution x=0 as t+co. The theorem is proved. 

The remark for Theorem 5 also applies to Theorem 6. 

Theorem 7. Suppose that for system (3.1) there exist: 
a differentiable function Y-f V(Y) taking positive values at some points y in any 

arbitrarily small neighbourhood Gve of the origin of coordinates {y = 0)~ R”‘; 
a map f: Glf+ G,I (0 E G,' E R”, 0 E G,’ G R”‘), where y = f (x), y = (yl, . . ., y,) E R” and 

f = (f,. . ., fm) is a Vector function, differentiable and definitely non-trivial in the domain 
G,” C_ G,'c_ G; and 

a map g: GXp+ Gig, z = g (2) (0 E G,' c_ R”, 0 E G,’ C R”), where z = (q, . . . , zp) E RP and 
g = (g1, . .1 gp) iS a VeCtOr function, definitely non-trivial in the domain G,w~G,flcG, such 
that the total derivative dV/dt (3.2) of the composition x+-V (f(x)) with respect to t 
from (3.1) can, using the map z = g(x), be transformed into a positive definite function 
z -+ W (z) in the domain G,"cG,g, i.e. dVldt = W(z). 

Then the unperturbed motion x=0 of system (3.1) is unstable. 

Proof. Suppose the conditions of the theorem are satisfied. Then, using the continuity 
of the map y = f(x) at the point x = 0, for any arbitrarily small E> 0 there exists a 

a>0 such that if 11x11(6 we have 11 yIj(c. In other words, points xcG6 = 
6 = const > 0) can correspond to an arbitrarily small neighbourhood of G," of t:e o!Tb!n'!f< 
coordinates {y = 0) E R”. Because by the conditions of the theorem the function y-V(y) takes 
positive values at some points Y E GUe, then by virtue of the non-trivial definiteness of the 

map s=f(x) the composition V(f(x)) is also positive at the corresponding points x E G,d. 
On the other hand, according to Theorem 2, the composition of the positive definite 
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function a- W(z) in the domain G,*s Gzg and the non-trivially definite map a = g (x) 
in the domain G,W, i.e., the function x-+ W(g(x)), will be positive definite in the domain 
Gzw (0 eGzw n G,"# 0). 

In this case all the conditions of Lyapunov's first instability theorem /6/ are satisfied. 
The theorem is proved. 

4. ExumpZes. 1) We will apply our results to the stability of the rotational motion of 
a shell. For a very shallow firing trajectory the following differential equations describe 
the perturbed motion /%f: 

(4.1) 

where zs is the angle made by the axis of the shell with its projection onto the firing 
plane,z& is the angle between this projection and the tangent to the trajectory of the centre 
of mass, and A, B, p and a are constants depending on the parameters and conditions of motion 
of the shell. 

The local stability of the unperturbed motion zl= sa=sg"= x,=0 was shown in /8/. 
Here we shall obtain an estimate for the domain of initial perturbations for which the trajec- 
tories remain in a bounded domain, as well as proving stability. 

Consider the function 

(4.3) 

that is positive definite in Rd, and in the domain 

G.,' = {x: 3% E R’, i= 1,2;/qj<z&?,j=3,4} (4.3) 

a definitely non-trivial map y= f(x) of the form 
Y, = zI cos zt, Y, = zz, Y, = sin zs, y4= sin zp cos z3 (4.4) 

We form a Lyapunov function 
J' (x) = Ii,(f (x)) + '/zApa (1 - cos 53 cos _~a)% (4.5) 

where x-+ v,(I(x)) is the composition of functions (4.2) and (4.4), 
The total derivative of the function t-V(z) (4.5) from system (4.11 is identically 

zero. According to Theorem 5 and its remark, the unperturbed motion X= 0 is stable and 
trajectories emerging from the domain G,' (4.3) remain in a bounded domain. 

2) We will use our results to derive the sufficient conditions for the asymptotic stab- 
ility for unperturbed motions x=0 of the following autonomous system, encountered in multi- 
frequency oscillation problems: 

where the CI, (i, i = 1, ., n) are real numbers. 
Consider the negative definite function 

V = i bly;, bi = const < 0. Vi=1,...,n 
i=I 

(4.7) 

in Rnr and the definitely non-trivial map y== f(x) of the form 

yt = )/l-Mzi, i = 1, . . ..n (4.3) 

in the domain G,'=(~:l=~1<~;1=1,...,n). 
The total derivative of the composition of the function (4.7) and the map (4.8) in system 

(4.6), 

$==Jld~~$-$-= 2 ~~~~ijicj,lsillriri~rj 

I;:1 ,S& i=l ;L, 

can be transformed into the quadratic form 



W(z) = i 2 Aljzizj, 
i=l j=I 

Aij = .4ji = ‘/zbi (cij + cji) (4.9) 

using a map z= g(x) of the form q = sin z, (i = 1, . ., R) that is definitely non-trivial in the 
domain Gsw = GX" 

Applying the recursive criterion for positive definiteness /3/ to the quadratic form 
w (2) (4.9), we obtain the following assertion: for the asymptotic stability of unperturbed 
motion +=o of system (4.6) with attraction domain Goce = (x: ~z,I<n,i= t,...,n} it is 
sufficient that there exist real numbers b,<O (i= 1, . . . . n) and 

C b. 

+ Cctj + cj,) - 

k=1 

* = 1, ., n; j = i, i + 1, ,, n; i > k > 1, axi E 0, Vk > i 

satisfying the conditions qi # 0, Vi= 1, . ., m. 
Suppose that these conditions are in fact satisfied. Then the function Y-v(y) (4.7) 

is negative definite, while the function z- W(z) (4.9) is positive definite. There also 
exists a map y= f(x) (4.8) that is definitely non-trivial in a domain G," and a map 2 = g (z) 
that is definitely non-trivial in a domain GXw such that GX" = GXw = (2: Is,I<n, i=l,...,n). 
In this case the domain Go<e=(x: V(f (.z))< e = const>O) coincides with the domain G,", i.e. 
G u<e = G,'= GXw. Because the phase space of system (4.6) is an n-dimensional torus, Gv..c 
is an attraction domain of the unperturbed motion x= 0, because there are no other points 
in the n-dimensional torus from which asymptotically stable trajectories could emerge. In this 
case the conditions of Theorem 6 are satisfied. The assertion is proved. 

We note that because of the periodicity of the right-hand side of system (4.6) the sol- 
utions zi= 2kx(k =i,Z. . . .), L = 1, . . ., n will be stable when these conditions are satisfied, 
whereas solutions zi = (Zk+ 1)n,(k= 0,1,2,...),i= l,...,n will be unstable. Indeed, in any 
arbitrarily small neighbourhood of the latter there exist points = E Gv<e. where Gt_ = 1x: In I < 

n. I=l, . . . . n) is an attraction domain of the solutions z,= 2kn (k= 0,1,2,...),r= 1,. . .( n. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 
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