J. Appl. Maths Mechs, Vol. 55, No. 1, pp. 17, 1991 0021-8928/91 $15.00+0.00
Printed in Great Britain ©1992 Pergamon Press plc

SIGN-DEFINITENESS CONDITIONS FOR COMPLEX FUNCTIONS
AND THE STABILITY OF THE MOTION OF NON-LINEAR SYSTEMS*

A.B. AMINOV and T.K. SIRAZETDINOV

Methods are developed for constructing sign-constant and sign-definite
functions. Theorems are proved on the stability and instability of
motion with a composite Lyapunov function, enabling the attraction
domains to be estimated and determined. Examples are considered.

The development of the Lyapunov vector function method /1/, the formulation and solution
of various problems of the stability of motion for variable subsets /2/, multistability /3/,
together with experience in the design of automated systems employing these methods, have
shown the need for further developments in methods and algorithms for constructing Lyapunov
functions and for obtaining fairly simple and constructive conditions for their sign-definite-
ness. At present, the necessary and sufficient conditions for sign-definiteness have only
been obtained for quadratic forms. These are the well-known Sylvester criterion and the
recursive criterion /4/. For higher-order forms and their sums, basically only sufficiently
conditions for sign-definiteness have been obtained /4, 5/. Furthermore, many papers on the
solution of various problems of the stability of motion determine the sign-definiteness of
the functions being used from estimates of their values.

This paper generalizes these approaches to obtain sign-definiteness conditions for
composite functions and gives a method for constructing Lyapunov functions in the form of a
composition of known sign-definite functions possessing special mapping properties.

1. Construction of sign-constant and sign-definite composite fumctions. Suppose that
in the domain (open set) G, R" (0 = G,) we are given a continuous real Lyapunov function
V:G,—~H,C R of the real variable y = (y;, ..., ym)T & R™, which can in general be sign-
constant or sign-definite in some domain G C G, (0 =G,). Here H, is the image domain of
the function y->V(y) and R™ is an m-dimensional Euclidean space.

It is known /1/ that the function y— V¥ (y) is sign-constant in the domain G,” if V(y) >
0,VyeE G\ 0 or V(<0 Vye6,\0 and V({0 =0. If V(@0 =0 and V(y) >0 VycsG’
or V(y)<0, Vye 6,°\ 0, then the function y— V(y) is called sign-definite in  the
domain G,°.

Suppose further that with the help of the continuous mapping f: G.* — G,* (0 = G.* < R",
0= G,* = R™) of the form

y=Ffx),E0) =0, x=(z,..,2) R, f=(fr- s f)T (1.1)

the function y-— V (y) transforms into the function W:G.,— H, & R' where G,* is the image
domain and G.* the domain of definition of the map y=f(x) (1.1}, G, is the domain of
definition (G, < G.*) and H, is the image domain (H, < H,) of the function x — W (x), and
R" is n-dimensional Euclidean space.

We wish to find the properties of the map y =1f(x) (1.1) for which the function X —
W (x) possesses the properties of the function y —» V(y), i.e. that it is either sign-con-
stant or sign-definite in some non-empty domain G°C R"™ (0 = G,’), depending on which proper-
ties are possessed by the function y-— V({y) in the domain G,°. We denote by G,* the domain
of images of all x =G, wunder the map y =f(x) (1.1), i.e. the image of G..

Definition 1. The continuous map y =f(x) (1.1) is constantly non-trivial if f(0) = 0
and there are values xe& G.* \ 0 such that y =1(x)s0.

Definition 2. The continous map y=f(x) (1.1) is definitely non-trivial in the domain
GC (0= G, < GX if f(0) =0 and for all x= G,°\ 0 the correspondingy = f (x) % 0.

We note that the set of constantly non-trivial maps included the definitely non-trivial
maps. This is similar to the inclusion of the sign-definite Lyapunov functions in the set of
sign-constant functions.

Theorem 1. 1If the continucus function y-»V(y) is sign-constant in the domain G, = R™
and the map y = f(z) (1.1) is constantly non-trivial and G,* < G,* G, then their
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composition W (x) = V (f (x)) 1is a continuous sign-constant function in the domain G," < G.*
with the same sign as the original function y— V (y).

Proof. Suppose that the conditions of the theorem are satisfied, and that, to be
specific, we have V(y)>0,Vye=G,°\ 0 and V(0) =0. For x =0 we have =0 and
so W(0) =V (0) =0. We then choose an aribitrary point xe& G,°\ 0 in the domain G,° < G.*.
Under the map y =f(x) (1.1) this point transforms into a point y= G,* C G,* () G, where
V(y) >>0. We therefore have the inequality W(x)>0, Vx=G6°\ 0 and W(@0) =0 for the
composition W (x) = V (f (x)) at any point x = G,°. Similarly, for V (y)<{ 0 we obtain
W) <0, Vxe 6\ 0, W () =0. Thus, the function x-— W (x) is sign-constant in the domain
G.” with the same sign as the function y— V(y) in the domain G,°. The continuity of the
function x-— W (x) follows from the continuity of the function y—W (y) and the conti-
ndity of the map y =1f(x) (1.1).

We note that if the function y— ¥ (y) and the map y =f(x) are differentiable, then
the composition is also differentiable. We shall frequently use these properties of  com-
posite functions in stability investigations.

Example 1. The function V(y)= y®+ (y — ys5)* is differentiable and sign-constant through-
out the space A% and the map ¥ = z; + tg z,, yp = sin z,, y5 = 3 COS 75 is differentiable and con-
stantly non-trivial in the domain G* = (g, z): |z | < /2, z, = RY}. All the conditions of Theorem
1 are satisfied. Hence the function W (x)= V (y(x))= (2, + tg zs)*+ (sinz, — 2, cos 5)? is differen-
tiable and sign-constant in the domain G,° = G,*with the same sign as the given functiony— V (y).

Corollary 1. The linear map y = Ax, where 4 is a real m X rn matrix, preserves
constant positivity of functions in R".

Theorem 2. 1If the continuous function y— V(y) is sign-definite in the domain G,°C
R™, and the map y =1f(x) (1.1) is definitely non-trivial in the domain G.°C G,* with
G* =G NG, then their composition W (x) = V (f(x)) is a continuous sign-definite
function in the domain G,° with the same sign as the original function y— V (y).

Proof. Suppose the conditions of the theorem are satisfied. To fix our ideas we take
Viyy>0, Vye= G\ 0, V(0)=0. It follows from the conditions of the theorem that W (0) =
V(0) =0. We now choose an arbitrary point x=G,°\ 0(G,°C G,*). The map y =1f(x) (1.1)
takes this point z into the point y=G,* C G,° ] G,*. From the definite non-triviality of
the map y =1f(x) we obtain ys£0 and consequently V (y) > 0.

Thus the composition W (x) = V (f (x)) at an arbitrary point x& G,° satisfies the
condition W(x) >0, Vx=6,°\ 0, W(0) = 0. Similarly, for V(y)< 0, Vy= G,°\ 0 we obtain

W) <0, Vxe 62\ 0, wW({0) =0. The function x — W (x) is therefore sign-definite in
the domain G,° with the same sign as the function y— V(y) in the domain G,°. The con-
tinuity of the function x— W (x) follows from the continuity of the function y— V{y)

and the continuity of the map y=1Ff(x) (1.1).

Example 2. The function V(y)=y’—wy:+ %»* 1is continuous and positive definite through-
out the space R?, and the map f: R*— R* of the form y =, yo=z,cosz, 1is definitely non-
trivial in the space R® All the conditions of Theorem 2 are satisfied. Hence the function
W (x) = 2,2 — 1,75 €0S 1y + % cos® 2y is continuous and positive definite in R2.

The map f:R*— R* of the form y, = V22~ 2% y» = 2. cos z; 1S continuous and definitely non-
trivial in R® Hence the function W (x) = 7,2 4 7352 — 2,V 7,2 252X €08 71 + 2,2 cos? oy is continuous
and positive definite in R

The map f: 2 - R' of the form 1y = =z,y,=azr,a=0 1is also continuous and definitely
non-trivial in R! Consequently,the function W(z)= (1 —a+ a® 2?2 1is continuous and positive
definite in RL

Corollary 2. The non-degenerate linear transformation y = 4Ax where 4 is an nXxn
real matrix and det 4 =0, preserves the positive definiteness of functions defined in R”.

Remark. No restrictions are imposed on the dimensionalities m and n of the mapped
spaces. Hence in certain special cases a sign-constant function can become sign-definite,
and, conversely, a sign-definite function can become sign-constant. For example, if we apply
the definitely non-trivial map u = z;, yo= 2;+ 25, ya= 2, to the sign-constant function V (y)=
n?+ (y2 — ys)*, we obtain the sign-definite function V (x)= 2%+ 2,2 in the space R!®. Going
the other way, we obtain a sign-constant function from a sign-definite function in R3. Here
the inverse map z, =y, 7=y, — ys 1S already constantly non-trivial, because for y; =0, yo= yy=
0 we obtain =z =1z,=0.

2. Conditions for sign-definiteness, using quadratic forms. We consider the quadratic
form

n—m n

V) = X Awyiyh o+ D
i=1 fy=n—

Q
m-4

. Ayt + 21 _22 Aii iy, (7 1y) (2.1)
iy=1 fp==



in which n—m  coordinates (i) =1,2,...,2 —m) are selected and tagged with asterisks.
The real numbers A (i, f=1,...,n) form a positive-definite » X r matrix, i.e. the form
(2.1) is positive definite.
We introduce a continuous map f G > Gy (where 06/ C B and 0 G C R
of the form
y\'n* =8 ... yM)vf(O) =0, 14 = 1,2,..,n—m (22)

where Gy’ is the image domain and G,+ the domain of definition of the map y* =f(y) (2.2),
Y=ol s m) SR, f=(fi, ... fam) 1is a vector~function, Y ={» ..., ¥») = RB® and
Ram g an (n — m)~dimensional Euclidean space.

Using this map as a substitution, we transform the quadratric form V(y) (2.1) into the
function W: G, H, C R!, i.e.

n—m i

n n
Wiy = ‘% Aiiyifilyp vy + 3 - A+ ,‘Z‘ﬁ% iy iy, (i = 1) (2:3)

Tyt 11

where G, is the domain of definition and H, the image domain of the function y.» W(y) (2.3).
We wish to specify the properties of the map y* ={f(y}) {2.2) for which the function
y—> Wiy {2.3) is positive definite in some non-empty domain G,°C R" (0 &= G, C G,).

Theorem 3. 1If the quadratric form ¥ ({y} (2.1) is positive definite, and the map y* =
f (y) (2.2) is definitely non-trivial in the domain G,°C G,/ and satisfies the inequalities

iy >t Vii=12,...n—m; YyesG, (2.4)
then the function y-> W(y) is positive definite in the domain G,°(] R™.

Proof. Suppose the conditions of the theorem are satisfied. Then inequalities (2.4)
imply that
Auini () — Anp* > 0(4u > 0), .o Apm, nem Ynmfrom (¥) — (2.5)
An—m, Rem y?z—-m = 0 (An—m, n-m > 0)

Summing the n-—m non-negative functions (2.5) and the positive definite quadratric form
V(y) (2.1), we obtain the function y— W(y) (2.3), which will be positive definite in
the domain &, [} R™. Indeed, at the point y =0 we have W{0) =0 (2.3), while for any
point Y= G,°\ 0 we have W{y) >0, because at that point y we are adding together V (y) >
0 and the sum of non-negative quantities (2.5). The theorem is proved.

Example 3. 'The function F(x)= az sinz + nz,+ z5° will be positive definite in the domain
Gx® = {{zy, #3): |7, | < W2, 3= RY} for e>» w2  This follows from condition {2.4) of Theorem 3, i.e.
the inequality e sinzg/z;>1  for |z|< /2 is satisfied if a > w/2.

Theorem 4. If Ay (&, iy =1, ..., m) are real numbers forming a symmetric m X m -matrix,
then for the function

m-—p m
W =2 duh@Fu (@) + 3 Aufi@ + 2.6)

P 2‘1 A fi (2) fi, () (= i), W(0) = 0

1y=1 =

to be positive definite in the domain G.°C R™ it is sufficient for there to exist real
numbers

i—-1

1 hl
@i = T(Ai)'" >_J ﬂmaw) 2.9
iz ¥—1
i=1,2,...,m;f=1ii+1,.. smii k2l e, =0,¥Vk> 1
satisfying the condition
a; =0, Vi=1, ..., m, 2.8)
a map F: GFf —» Gy <& R™P for the selected coordinates y* <= R™p:
V* =Fy oo oym)y b =1,2,..,m—p 2.9

definitely non-trivial in the domain &° < G,F and satisfying the inequalities

Fo Wy =1, Vi,=1,2 ..., m—p, (2.10)
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and a map f: G/ — G, & R™, definitely non-trivial in the domain G,"C G/ C B*, of the form
¥i— fﬁ"(x)| iy = 1, .., m. (211)

Procf. Suppose real numbers ai; {2.7) exist obeying condition {2.8), i.e. the recursive
criterion for the sign-definiteness of quadratic forms is obeyed /3/:

m o om

]/ 2| > Av.myuyw A, = Ai,i, (2.12)

iy=1 f=1

The recursive formulae (2.7) and condition {2.8) are in fact obtained from the following
equality:

T " £

21 2 Aviyigs, = _24 (}_4 aiy;)? (2.13)

H==1 dy=1 fy

where for condition (2.8) the right-hand side is a positive-definite quadratic form, while
the left is the quadratic form V(y) {2.12). Hence the form V (y) {2.12) is also positive
definite.

Suppose there exists a map F:GF > G,*{2.9), definitely non-trivial in the domain
G < G S GF, acting only on the selected coordinates y.* (i, = 1,...,m — p) and satisfying
condition (2.10). Then according to Theorem 3 the function

m—p i moom

VE = 2 AgiFi ey £ 2 A;,s‘y?‘ - 32 Ay, Gy i) 2.14)
HW=1 =1 Ty}

iy g

will be positive definite in the domain G, [} R".

If a map i, = fu (x) (2.11) exists, definitely non-trivial in the domain G, = G, then
substituting the values of yi, = fi (x), ip=1,....m {2.11) into the function V*(y) (2.14), we
find from Theorem 2 that the function W (x) = W* (I (x)) 1is positive definite in the domain
G, . The theorem is proved.

Example 4. The function W (z)= 5 sinz-+ 11 costz 4 7z sin z — 2z cos 2 —5 sin 2z -+ 2z -+ 10 sin ¢ — 22 cos
z+ 11 is positive definite for |z|<n/2, because all the conditions of Theorem & are satisfied.
indeed, this function is obtained from the positive definite quadratic form V(y) = 5>+ 249+
viys 4 59 + 240y + Syeys + 1ya® + yayy + Bysys using a mapping a one selected coordinate y, in the
first term, i.e. y* = 3siny, definitely non-trivial and satisfying condition (2.10) for [z]<«
n/2, and the map y = z, y, == sin r, y = 1— cos z, definitely non-trivial for |z|<=.

3. Stability and tnstability theorems with a composite Lyapunov function. Suppose we are
given a system of differential equations for perturbed motion

dxfdt =X (x), X0 =0, x=(z5..,2,)=R" 3.0
where X = (X,, ..., X,) 1is a vector function such that existence and unigueness conditions
are satisfied for solutions to Eg.{3.1) in the domain G={x:|zl|<H =const, || 2| = z® +

. -+ 2,2}, We shall investigate the stability of the unperturbed motion x =0 of system
(3.1).

Theorem 5. Suppose that for system ({3.1) there exist:

a function y-» V {y), differentiable and positive definite in the domain G = G/
a map f: Gf-a»G =6/ cr, GeG C R"), y=1Ii(x), where y={y, ..., ¥ym) ER” and
{=(fi, .... fm} 1is a vector function, dlfferentlable and definitely non-trivial in the domain

(25 ot G = 6; ana
a differentiable and constantly non-trival map g GfF—GS(0SGEFC R, 0&=GEC RY), z =

g(x) where z = (3, ..., z)& R" and g = (g ... &) 1is a vector function, such that the
total derivative of the composition V¥ (f(x)) with respect to t, which from system (3.1) is
" i3 m n
av — av ‘3& d.rj - av 6f@ .
= 5y, 7, A Z T, oz, L), 3-2)

Tmed =1 =1 j=1

and using the map z — g (x) is transformed into a constantly negative or identically zero
function z— W(z), 1i.e. dV/di =W (z).

Then the unperturbed motion x =0 of system (3.1) is stable (uniformly with respect
to #,), and all trajectories emerging from the domain 6,° remain in a bounded domain.

Proof. Suppose the conditions of the theorem are satisfied. Then according to Theorem 2



the composition of the function yY— V(y) which is positive definite in the domain G;° and
the map y = f(x) which is definitely non-trivial in the domain G,°, i.e. the function

x— V(f (x)), is positive definite in the domain G:° & R".  According to Theorem 1, the com-
position of a sign-constant (constantly negative) or identically zero function z->W(z) and
a constantly non-trivial map z =g (x), i.e., the function x — W (g (x)), will be respect-

ively a constantly negative or identically zero function in a neighbourhood of the unperturbed
motion z = 0. Then all the conditions of Lyapunov's stability theorem /6/ with Persidskii's
addition /7/ are satisfied. Because V (f (x)) li>o <X V (f (X)) |;=o, and because the composite func-

tion x— V (f(x)) is positive definite, the trajectories of motion remain in a bounded domain
if they emerge from the domain G,°. The theorem is proved.

Remark. Theorem 5 remains valid if we take as a Lyapunov function the sum V (f(x))+ p (x),
where x —p(x) is non-negative sign-constant function with p (0)= 0.

Theorem 6. Suppose that for system (3.1) there exist:
a function y — V (y), differentiable and positive definite in a domain G,° =G, ;

amap f: G — 6/ =G/ =RY), 0=6,/=R™, y=1(x), where y={(y - Ym) = R"
and f=(f;, ..., fJm) 1is a vector function, such that f is differentiable and definitely non-
trivial in the domain G6S°C G/ G; and

amap: £:G5f >GF0=GEFCE R, 0=G SC R,z =g (x), where z=(2,...,2) =R’ and
g = (g ..., &) is a vector function, definitely non-trivial in a domain GW CGSfCG,

such that the total derivative dV/d¢ (3.2) of the composition V (f(z)) with respect to t
from the system (3.1) can, using the map 2z =g (x), i.e. dV/dt = W (z), be transformed into a
negatively definite function z-— W (z) in the domain G.°= G)S*.

Then the unperturbed motion z = of system (3.1) is asymptotically stable (uniformly
with respect to =z, ;) and the bounded domain

Goee = {x:V({{(x) e =const >0}2G,° N GW (2.3)
lies in the attraction domain of the unperturbed motion x =0 of system (3.1).

Proof. Suppose the conditions of the theorem are satisifed. Then according to Theorem 2,
the composition of the function y— V (y) which is positive definite in the domain G,° and
the map y = f(z) which is definitely non-trivial in the domain G,°, i.e., the function
z— V(f(x)), is positive definite in the domain G, According to this theorem, the com-~
position of a function z-» W (z) that is negative definite in the domain G.° and a map
z =g (x) that is definitely non-trivial in the domain G.%, i.e. the function x—» W (g (x)),
will be negative definite in the domain G, (0 = G.W () G° % {3). Then all the asymptotic
stability conditions of Lyapunov's theorem /6/ with Malkin's addition /7/ are satisfied and
the unperturbed motion x =0 of system (3.1) is asymptotically stable, uniformly with respect
to z, and i, .

Here the bounded domain G« (3.3) is contained in the intersection of the domains
G,° and G,", and so the level surfaces of the positive definite function x— V(f(x)) are
closed surfaces nested inside one another. Hence any trajectory x (f; o, f,) with initial
value x;, = X (f;) & Gy« Will cross the surfaces from the outside to the inside and tend to the
solution x =0 as t—>oco. The theorem is proved.

The remark for Theorem 5 also applies to Theorem 6.

Theorem 7. Suppose that for system (3.1) there exist:
a differentiable function y-—» ¥V (y) taking positive values at some points y in any
arbitrarily small neighbourhood &, of the origin of coordinates {y = 0} &= R™;

a map f: GJ—»G,,’ 0=6/=R* 0c G/ = R™, where y=f(x), y=(y1,.. ., ym) = R™ and
f=(n,.. . fn) is a vector function, differentiable and definitely non-trivial in the domain
G <G =G and

amap g: GF>GF z=g@@ (0=6G =R, 0=G/ C R™, where z=1(,, ..., z,) & R and
g =1(8 - .- gp) 1s a vector function, definitely non-trivial in the domain G,W < G.f = G, such

that the total derivative dV/dt (3.2) of the composition x— V (f(x)) with respect to ¢t
from (3.1) can, using the map z = g (X), be transformed into a positive definite function
z — W (z) in the domain GS°C G2, i.e. dV/di = W (z).

Then the unperturbed motion x =0 of system (3.1) is unstable.

Proof. Suppose the conditions of the theorem are satisfied. Then, using the continuity
of the map y =1f(x) at the point x =0, for any arbitrarily small e >0 there exists a
§>0 such that if ||x||<<8 we have | y]| <e. In other words, points x =G = {z: || z|| <
8 = const >> 0} can correspond to an arbitrarily small neighbourhood of G,® of the origin of
coordinates {y = 0} &= R™. Because by the conditions of the theorem the function y— V (y) takes
positive values at some points y & G2, then by virtue of the non-trivial definiteness of the
map y =1{(x) the composition V (f(x)) is also positive at the corresponding points x < GJ.

On the other hand, according to Theorem 2, the composition of the positive definite



function z-» W{z} in the domain €°C G, and the non-trivially definite map 2 = g (x)
in the domain G,%, i.e., the function x-» W (g (x)), will be positive definite in the domain
GX (0 67 N 6+ Q).

In this case all the conditions of Lyapunov's first instability theorem /6/ are satisfied.
The theorem is proved.

4. Examples. 1) We will apply our results to the stability of the rotational motion of
a shell. For a very shallow firing trajectory the following differential equations describe
the perturbed motion /8/:

dzy sin x4 Ap = a sinzrg
— e — 4
dt 22372 gog z4 B Gosz. T B cos T4 4.1
drg 2. Ap a
A = n?sinzacos g - G %1008y + "B Sin xyc08 x3
dzg dzy
it B ek

where =z; is the angle made by the axis of the shell with its projection onto the firing
plane, zy is the angle between this projection and the tangent to the trajectory of the centre
of mass, and 4, B, p and a are constants depending on the parameters and conditions of motion
of the shell.

The local stability of the unperturbed motion gz, = zy=uz3=23=20 was shown in /8/.
Here we shall obtain an estimate for the domain of initial perturbations for which the trajec-
tories remain in a bounded domain, as well as proving stability.

Consider the function

Vi y) = (anyr + 61390 + (agaln + aaaya)® + (aaaia)® -+ (a0as)? (4.2)
43,2 = ay,% = 1/2BAp, ay,a14 == ~—099893 = Ba, a1 + ag® == asg® - ags® =
YsApa

that is positive definite in A4, and in the domain
60 = {xiz e R 1= 1,2 || <al2,j=3,4 @3

a definitely non-trivial map y=f(x} of the form
¥y == Iy COS X4, Yo = Zp, Y3 = sin z3, yg == sin x4 COS xy (4.4)
We form a Lyapunov function
¥ (x) = Vi(f (x)) + Yadpa (1 — cos z3 cos z)? (4.5)

where x— V([ (x)) is the composition of functions (4.2) and {(4.4).

The total derivative of the function z—V{z) (4.5) from system (4.1) is identically
zero. According to Theorem 5 and its remark, the unperturbed motion x=0 1is stable and
trajectories emerging from the domain 6,° (4.3) remain in a bounded domain.

2) We will use our results to derive the sufficient conditions for the asymptotic stab-
ility for unperturbed motions x=0 of the following autonomous system, encountered in multi~
frequency oscillation problems:

de. -
ki . > 7 .
" n> ¢y sinzy, i=4 .o, (o .z)=xeR (4.6

where the ¢y (i, j==1, ..., n) are real numbers.
Consider the negative definite function

n
V= Mbyl b =const<0 Vi=1i,...,n )
i=1

in A*, and the definitely non-trivial map y={(x} of the form
y, =Y T—cosz, i=1...,n (4.8)

in the domain G.° = {x:|z |<mji=1,...,n}
The total derivative of the composition of the function {4.7) and the map (4.8) in system
{4.6}),
kil

kid » n
av S S‘ av_oy; dz, '3‘! y. b, . .
= 5 Lguysinr, .
at ol el oy; dx; dt o oo 3 {6 o) sinz;sing,

keSS

can be transformed into the quadratic form



n n
W (z) = .2 Z A2,2, A = Ay =1ab, (e +cj) 4.9)
i=1 j=1
using a map z=g(x) of the form gz =sinz (i=1, ..., n) that is definitely non-trivial in the
domain ¢% = ¢p°
Applying the recursive criterion for positive definiteness /3/ to the quadratic form

W (z) (4.9), we obtain the following assertion: for the asymptotic stability of unperturbed
motion =z=0 of system {(4.6) with attraction domain G, = {x:|z|<w i=1,...,n} it is
sufficient that there exist real numbers % <0 (i=1,...,n and
i—1
1 bi
4“i=a, [T(”u'“ﬁ)— Z“kiaw]
@ k=1
i=1,..,nj=di+1, ..., 0i>k>1,a,=0VE>i

satisfying the conditions a; +0, Vi=1, ..., m.

Suppose that these conditions are in fact satisfied. Then the function y—=V(y) (4.7)
is negative definite, while the function z— W(z) (4.9) is positive definite. There also
exists a map y=1(x) (4.8) that is definitely non-trivial in a domain G° and a map z= g ()
that is definitely non-trivial in a domain 6, such that G =6 ={a: |g | <, i=1,...,n).
In this case the domain Gy<c={x:V (f (z)) < ¢ = const >0} coincides with the domain 6.°, i.e.
Gv<c:‘Gx°=:wan Because the phase space of system (4.6) is an n—dimensional torus, Gyee

is an attraction domain of the unperturbed motion x =10, because there are no other points
in the n-dimensional torus from which asymptotically stable trajectories could emerge. In this
case the conditions of Theorem 6 are satisfied. The assertion is proved.

We note that because of the periodicity of the right-hand side of system (4.6) the sol-

utions z;=2kn(k=1,2,...),i=1,...,n will be stable when these conditions are satisfied,

whereas solutions z;= (2k+ 1)=, (k=0,1,2,...),¢i=1,...,n will be unstable. Indeed, in any

arbitrarily small neighbourhood of the latter there exist points zeG,,, Wwhere G, . ={z|=z|<

n,i=1,...,n} is an attraction domain of the solutions z = 2kn (k=0,1,2,...),i=1,..., n.
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